A higher-order deformed Heisenberg spin equation as an exactly solvable dynamical equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1989 J. Phys. A: Math. Gen. 22 L53
(http://iopscience.iop.org/0305-4470/22/2/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 07:01

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A higher-order deformed Heisenberg spin equation as an exactly solvable dynamical equation

De-gang Zhang and Jie Liu
Institute of Solid State Physics, Sichuan Normal University, Chengdu 610066, People's Republic of China.

Received 23 September 1988

Abstract

We find that a deformed continuous Heisenberg spin equation is geometrically equivalent to the Hirota equation, for which there exists an N-envelope-soliton solution.

In recent years wide interest has been focused on the close connection between various non-linear systems (Lakshmanan 1977, Porsezian et al 1987, Lamb 1976 and Kundu 1984). In this letter, we shall prove that the higher-order deformed Heisenberg spin equation

$$
\begin{align*}
& \boldsymbol{S}_{t}=\boldsymbol{S} \times \boldsymbol{S}_{x x}-3 \alpha\left(\boldsymbol{S}_{x} \cdot \boldsymbol{S}_{x}\right) \boldsymbol{S}_{x}-6 \alpha\left(\boldsymbol{S}_{x} \cdot \boldsymbol{S}_{x x}\right) \boldsymbol{S}-2 \alpha \boldsymbol{S}_{x x x} \\
& \boldsymbol{S} \cdot \boldsymbol{S}=1 \quad \boldsymbol{S}=\left(S_{1}, \boldsymbol{S}_{2}, S_{3}\right) \tag{1}
\end{align*}
$$

where α is a real positive constant, is geometrically equivalent to the Hirota equation (Hirota 1973).

We map (1) on a moving helical space curve described by the orthogonal trihedral $\boldsymbol{e}_{i}(i=1,2,3)$ which satisfies the Serret-Frenet equations (Lamb 1976)

$$
\begin{align*}
& \boldsymbol{e}_{1 x}=k \boldsymbol{e}_{2} \\
& \boldsymbol{e}_{2 x}=-k e_{1}+\tau e_{3} \tag{2}\\
& \boldsymbol{e}_{3 x}=-\tau e_{2}
\end{align*}
$$

where the curvature is given by $k=\left(e_{1 x} \cdot e_{1 x}\right)^{1 / 2}$ and the torsion is given by $\tau=$ $k^{-2} e_{1} \cdot\left(e_{1 x} \times e_{1 x x}\right)$.

Putting $e_{1}=S$ and using (1) and (2), we can obtain $e_{i t}$ as follows:

$$
\begin{equation*}
\boldsymbol{e}_{i t}=\boldsymbol{\Omega} \times \boldsymbol{e}_{i} \quad \boldsymbol{\Omega}=\sum_{i=1}^{3} \Omega_{i} \boldsymbol{e}_{i} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Omega_{1}=-\tau^{2}+k^{-1} k_{x x}-\alpha k^{2} \tau-6 \alpha k^{-1} k_{x x} \tau+2 \alpha \tau^{3}-6 \alpha k^{-1} k_{x} \tau_{x}-2 \alpha \tau_{x x} \\
& \Omega_{2}=-k_{x}+4 \alpha k_{x} \tau+2 \alpha k \tau_{x} \\
& \Omega_{3}=-k \tau-\alpha k^{3}-2 \alpha k_{x x}+2 \alpha k \tau^{2} .
\end{aligned}
$$

The compatibility of (3) gives rise to the following evolution equations:
$k_{t}=-2 k_{x} \tau-k \tau_{x}-3 \alpha k^{2} k_{x}-2 \alpha k_{x x x}+6 \alpha k_{x} \tau^{2}+6 \alpha k \tau \tau_{x}$
$\tau_{t}=\left(-\tau^{2}+\frac{1}{2} k^{2}+k^{-1} k_{x x}-3 \alpha k^{2} \tau-6 \alpha k^{-1} k_{x x} \tau+2 \alpha \tau^{3}-6 \alpha k^{-1} k_{x} \tau_{x}-2 \alpha \tau_{x x}\right)_{x}$.

One can consider the complex transformation (Lakshmanan 1977)

$$
\begin{equation*}
\psi=k(x, t) \exp \left(\mathrm{i} \int_{-\infty}^{x} \tau\left(x^{\prime}, t\right) \mathrm{d} x^{\prime}\right) . \tag{5}
\end{equation*}
$$

Equations (4) then become the Hirota equation

$$
\begin{equation*}
\mathrm{i} \psi_{t}+\psi_{x x}+\frac{1}{2}|\psi|^{2} \psi+\mathrm{i} 3 \alpha|\psi|^{2} \psi_{x}+\mathrm{i} 2 \alpha \psi_{x x x}=0 \tag{6}
\end{equation*}
$$

which is the equivalent form of (1). As the Hirota equation has been solved by the bilinear method (Hirota 1973), we immediately conclude that our higher-order deformed Heisenberg spin equation (1) is exactly solved.

References

Hirota R 1973 J. Math. Phys. 14805
Kundu A 1984 J. Math. Phys. 253433
Lakshmanan M 1977 Phys. Lett. 61A 53
Lamb G Jr 1976 Phys. Rev. Lett. 37235
Mikhailov A V and Shabat A B 1986 Phys. Lett. 116A 191
Porsezian K, Tamizhmani K M and Lakshmanan M 1987 Phys. Lett. 124A 159

